
Implementation-Aware Model Analysis:
The Case of Buffer-Throughput Tradeoff in

Streaming Applications

Kamyar Mirzazad Barijough, Matin Hashemi
 Sharif University of Technology, Tehran, Iran

Volodymyr Khibin, Soheil Ghiasi
 University of California, Davis, CA, USA

Streaming Applications
 Widespread
 Cell phones, video conference, real-time encryption,

graphics, HDTV editing, hyperspectral imaging, cellular
base stations

 Properties
 Infinite sequence of data items
 At any given time, operates on a small window of this

sequence
 Fairly deterministic behavior
 Throughput-Sensitive

 Implementation Platform
 MPSoC is a competitive choice in the mix

5 5 2 6 4 1 8 9 3 input

output -1 7 2 0.4 7.2 1

//53° around the z axis
const R[3][3]={
 {0.6,-0.8, 0.0},
 {0.8, 0.6, 0.0},
 {0.0, 0.0, 1.0}}
Rotation3D {
 for (i=0; i<3; i++)
 for (j=0; j<3; j++)
 B[i] += R[i][j] * A[j]
 }

Synchronous Dataflow (SDF) Model

3

 SDF model
 a directed graph G(V,E)
 Vertices represent actors
 Edges represent inter-actor data dependency

(FIFO communication semantics)
 semantically have infinite storage capacity

 Static data production and consumption rates

 Periodic static schedule

a
100

b
300

c
200

20

10

50

10

20

50

An example SDF graph

data production rate

data consumption rate

task execution time

A Few Definitions

4

 Buffer size: storage capacity of inter-task channels
 Infinite in the abstract model; in practice limited
 Modeled as reverse channels with specific number of initial tokens & rates

 Throughput of an actor 𝑣: the average number of 𝑣 firings per unit time
 A number of factors, such as actor execution times, interprocessor buffer capacities

and SDF graph cycles impact throughput.

a

b

c
20

10
50

10

20
50

50

10

β

Simplified SDF Operational Semantics

5

 An actor can fire only after sufficient number of input tokens are available on
all of its input channels.
 Otherwise firing is deferred
 Upon firing all input tokens are consumed simultaneously

 After an actor completes its computation, sufficient space is required on all of
its output channels to write the tokens produced.
 Otherwise firing is stalled
 Upon completion, all output tokens are produced simultaneously

 Actor would also have to defer firing if another execution of the actor is
running (auto-concurrency)

Tradeoff Analysis Based on SDF Operational Semantics

6

a a a a a a a a a
b b b

c

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

γ=(0,0,0) γ=(20,10,0) γ=(40,20,0) γ=(60,30,0) γ=(10,30,0) γ=(30,40,0) γ=(50,50,0) γ=(50,50,10) γ=(0,50,10)
a stalls

(not enough empty space in ac)

γ=(0,50,20) γ=(0, 0, 0) γ=(20,10, 0)
a resumes

(ac has enough space)

γ=(40,20, 0) γ=(60,30, 0) γ=(10,30, 0)

a
100

b
300

c
200

20

10

50 10

20

50
𝛽 𝑎𝑎, 𝑎𝑏, 𝑎𝑏 = 60,50,20

Throughput vs. Total Buffer Size (model-based)

7

 For a given set of buffer sizes 𝛽, throughput can be obtained by considering the
firing, stall and resume conditions.

 Throughput vs. total buffer size of an SDF graph can be evaluated using Stuijk et al.’s
Pareto point exploration algorithm.

(0,0,0) (20,10,0) (40,20,0) (60,30,0)

(10,30,0)

(30,40,0)

(50,50,0)
(50,50,10)

(0,50,10)

(0,50,20)

(0,0,0)

(20,10,0) (40,20,0)

(60,30,0)

𝛽 𝑎𝑎, 𝑎𝑏, 𝑎𝑏 = 60,50,20
wrt actor ′c′

 𝜏 = 1
(1100 − 300)�

distribution size

th
ro

ug
hp

ut

Stuijk et al. judiciously select a subset of
possible 𝛽 𝑎𝑎, 𝑎𝑏, 𝑎𝑏 values to explore

MPSoC Software Implementation

8

 Target platform: a distributed-memory message-passing system with logical
direct inter-processor FIFO buffers
 directly implemented in some platforms such as AsAP and TILE64 static network
 logical view can also be implemented on shared memory platforms

 Tasks implemented as software modules running on parallel processors

Block diagrams of a single AsAP processor and the
6x6 AsAP 1.0 chip [Baas et al.]

Abstract View of Implementation

9

 Sequence of reads followed by actor’s data transformation computation and finally
sequence of writes to output buffers.
 Unlike simultaneous reads (writes) assumed in the model

 Interconnect networks have limited bandwidth and in practice, each token may
need to be split into 𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑠𝑡𝑠𝑡)

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑡𝑠𝑡)
 packets and transferred.

// task ‘a’ on P1
token ab[20];
token ac[10];

while(){
 a(ab,ac);
 write(ab,20,P2);
 write(ac,10,P3);
}

// task ‘b’ on P2
token ab[50];
token bc[10];

while(){
 read(ab,50,P1);
 b(ab,bc);
 write(bc,10,P3);
}

// task ‘c’ on P3
token bc[20];
token ac[50];

while(){
 read(bc,20,P2);
 read(ac,50,P1);
 c(bc,ac);
}

(B)

(A)

void write (token* x, int n, int dst){
 for i=[0,n)
 for j=[0,s)
 writePacket(x[i],j,dst);
}

void read (token* x, int n, int src){
 for i=[0,n)
 for j=[0,s)
 readPacket(x[i],j,src);
}

a

b

c
20

10

50
10

20
50

P2

P3 P1

Implications of Implementation-Awareness

10

 Task can write (read) only one token to (from) only one channel at a time.
 The implementation temporal behavior diverges from the model.

a c

b P2

P3 P1

An Example Divergence in Behavior

11

a c

b

 Task c (processor P3) stalls when it tries to read for the first time, since there is no
token available on channel bc.

 Once task b (processor P2) places the first token on this channel, the stalled
readPacket function in c resumes execution and reads that token.

 Observation: In this setting 𝛽 𝑎𝑏 = 1 would be sufficient to achieve the same
throughput
 In contrast with model-driven lower-bounds to avoid deadlock!

P2

P3 P1

Implementation-Aware SDF Graph Transformation

12

 Our proposal, a two step approach:
 Embed limited information about target implementation into the graph
 Analyze the transformed SDF graph 𝐺′ by using the existing implementation-oblivious

analysis technique (e.g., Stuijk et al. algorithm)

 Specifically, in case of the target MPSoC Implementation
 Tasks can read (write) only one token at a time

Modeled by adding virtual reader and writer actors

 Tasks can read (write) from (to) only one channel at a time
Modeled by adding virtual sync actors

Virtual Reader and Writer Actors

13

 Reader and writer actors
 Unit data production and consumption rates
 Identity data transformation functionality
 For every firing of 𝑢, the writer actor fires 𝒓𝒑(𝒖𝒖) times sequentially to consume the

tokens produced by 𝑢.
 For every firing of 𝑣, the reader actor fires 𝒓𝒄(𝒖𝒖) times sequentially to produce the

tokens needed by 𝑣.

v

W1

W2

W3

v

1 1

1 1

1 1

1 1

1 1
R1

R2

𝑏1

𝑏2

𝑝1

𝑝2

𝑝3

𝐺𝑉

𝑏2

𝑏1 𝑝1

𝑝2

𝑝3

1 1 1 1
u v W u v R

𝑟𝑝(𝑢𝑣) 𝑟𝑝(𝑢𝑣)

𝛽(𝑢𝑣)

𝑟𝑝(𝑢𝑣)

𝛽 = 𝑟𝑝(𝑢𝑣) 𝛽 = 𝛽(𝑢𝑣) 𝛽 = 𝑟𝑝(𝑢𝑣)

𝑟𝑝(𝑢𝑣)

Virtual Sync Actors

14

 Reader and writer actors can potentially fire simultaneously.
 Has to be eliminated to correctly model the sequential nature of task execution

 Virtual sync actors enforce the sequential order
 A sync actor between 𝑊𝑂𝑂𝑡(𝑣) 𝑎𝑎𝑎 𝑅1 to prohibit concurrent execution of

reader and writer actors

v

R1

R2

W1

W2

S2

S1

S3

W3

S4

c1

c2

p1

p3

p2

1 1

1 1

1
1

1
1

1 1

1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

1
p3 c1

c1 initial tokens

v

R1

R2

W1

W2

S2

S1

S3

W3

c1

c2

p1

p3

p2

1 1

1 1

1
1

1
1

1 1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

𝐺𝑉
𝐺𝑉

Impact on Throughput

15

 Read, write and sync actors are added to model the sequential order among
read and write operations in the implementation
 must not have any impact on the total execution time of the graph

 We set the execution times of reader and writer actors to zero, and assign
the entire execution time of the original actor to v.
 If specific parameters of the target architecture are known, the model fidelity could be

improved by breaking down the actor latency between read/write and data
transformation operations.

 A number of properties are proved about the proposed transformation
 Examples: lower bounding memory requirement and asymptotic throughput
 Please refer to the paper

Experiments

16

 Evaluated using StreamIt benchmarks.
 SDF graph, data rates (𝑟𝑝 𝑎𝑎𝑎 𝑟𝑝) and estimates of actor execution time (𝜀)

are extracted using StreamIt compiler.

Parallel
Code

(.c files)

SDF
Graph G

Cycle-Accurate Simulation

Graphite
Simulator

Measured
Throughput

SDF
Graph G’ Tradeoff Analysis

based on SDF
Operational Semantics

Tradeoff Analysis
based on SDF

Operational Semantics

Implementation Oblivious Analysis

Implementation-Aware Analysis

StreamIt
Benchmark
(.str file)

Compile
(gcc -O2)

Binary

Pareto
Points

Pareto
Points

Buffer Size

StreamIt Compiler

Extract
SDF

Graphite
Comm.

API
Graphite

CPI

Implementation-Aware
Graph Transformation

Reader
& Writer
Actors

Sync
Actors

Implementation
Model

Throughput-Buffer Size Tradeoff

17

 The analysis yields a set of pareto
optimal points between the total
buffer size, 𝛽 , and the corresponding
overall throughput, 𝜏.

 The implementation-aware tradeoff
analysis yields substantially smaller
buffer estimates compared to the
implementation-oblivious analysis for
the same level of throughput.

Total Buffer Size Reduction

18

 Implementation-aware analysis yields a substantial reduction in total buffer size
requirement, under throughput constraints.

Reduction in total buffer size estimates using implementation aware analysis.

Accuracy of Model-Based Analysis

19

 Simulated executable binaries under different buffer sizes using Graphite Multicore
simulator.

 Buffer size distribution (𝛽 𝑢𝑣 for all channels 𝑢𝑣) adjusted to match estimates
that result in the maximum throughput according to implementation-aware model
analysis.

Parallel
Code

(.c files)

SDF
Graph G

Cycle-Accurate Simulation

Graphite
Simulator

Measured
Throughput

SDF
Graph G’ Tradeoff Analysis

based on SDF
Operational Semantics

Tradeoff Analysis
based on SDF

Operational Semantics

Implementation Oblivious Analysis

Implementation-Aware Analysis

StreamIt
Benchmark
(.str file)

Compile
(gcc -O2)

Binary

Pareto
Points

Pareto
Points

Buffer Size

StreamIt Compiler

Extract
SDF

Graphite
Comm.

API
Graphite

CPI

Implementation-Aware
Graph Transformation

Reader
& Writer
Actors

Sync
Actors

Implementation
Model

Accuracy Comparison of Throughput Estimates

20

 Implementation-oblivious analysis vs. cycle-accurate simulation

 The implementation oblivious analysis falsely reports deadlock in six out of nine benchmarks. Average error: 74%.

 Implementation-aware analysis vs. cycle-accurate simulation

 Throughput estimation error is less than 5% in beamformer, dct, fft and mergesort. Average error: 19%

Throughput estimates normalized relative to cycle-accurate simulation results

Impact on Analysis Runtime

21

 While heavily application-dependent, the execution time of implementation-
aware analysis is on average about 7.3 times of baseline analysis.

 Execution time overhead is mostly due to the larger graph complexity (reader,
writer and sync).

Runtime of implementation-aware relative to implementation-oblivious model analysis.

Impact on Analysis Runtime

22

 For 6 out 9 benchmarks, implementation-aware analysis runs more than
2 orders of magnitude faster than simulation.

 On average, it takes about 102X longer to run cycle-accurate
simulations than to run the proposed implementation aware analysis.

Runtime of cycle-accurate simulation relative to the proposed technique.

23

Questions

Thank you

	Implementation-Aware Model Analysis: �The Case of Buffer-Throughput Tradeoff in Streaming Applications
	Streaming Applications
	Synchronous Dataflow (SDF) Model
	A Few Definitions
	Simplified SDF Operational Semantics
	Tradeoff Analysis Based on SDF Operational Semantics
	Throughput vs. Total Buffer Size (model-based)
	MPSoC Software Implementation
	Abstract View of Implementation
	Implications of Implementation-Awareness
	An Example Divergence in Behavior
	Implementation-Aware SDF Graph Transformation
	Virtual Reader and Writer Actors
	Virtual Sync Actors
	Impact on Throughput
	Experiments
	Throughput-Buffer Size Tradeoff
	Total Buffer Size Reduction
	Accuracy of Model-Based Analysis
	Accuracy Comparison of Throughput Estimates
	Impact on Analysis Runtime
	Impact on Analysis Runtime
	Thank you

