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CNNdroid Motivation
• GPU acceleration enables practical execution of many 

deep CNN algorithms on smartphones and wearable 
devices and enables more creative media-rich apps

• CNNdroid is the first GPU-accelerated library for 
execution of trained deep CNNs on Android devices

• Android versions of Caffe and Torch only employ multi-core 
mobile CPU and not mobile GPU

• Mobile GPU architecture is different from desktop GPU, 
hence, it is impossible / inefficient to port existing parallel 
algorithms in desktop libraries, e.g., Theano, to Android

Image Credits: IBM Research, Guardianlv, Nixie, Android Wear
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Deployment Procedure
1. CNN model is trained by desktop platforms, e.g., Caffe, Torch, Theano
2. CNNdroid scripts convert trained models into CNNdroid format
3. NetFile is created by the user

• Layer setup of the deep CNN model
• Execution mode: CPU-only or GPU-accelerated
• Maximum memory usage of the library
• Turn auto-tuning ON or OFF

4. The trained model and the NetFile are uploaded to mobile device
5. Integration of CNNdroid into target Android app in only 5 lines of code
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// 1) Import CNNdroid library import network.CNNdroid;
...

// 2) Construct Renderscript object
RenderScript myRenderScript = RenderScript.create(this);

// 3) Provide NetFile and construct CNNdroid object
String NetFile = "/sdcard/AlexNet/AlexNet_NetFile.txt";
CNNdroid myCNN = new CNNdroid(myRenderScript, NetFile);

// 4) Prepare your input, which can be
//    a single image or a batch of images
float[][][] inputSingle = loadSingleInput();
float[][][][] inputBatch = loadBatchInput();

// 5) Call ‘compute’ function for CNN execution 
//    and receive the result as an object
Object output = myCNN.compute(inputBatch);

Integration into Android application



Experiment Results - Speedup
• Average runtime of the heaviest convolution layer per image in a batch

of 16 images, and the corresponding speedup
• Up to ~ 60 X speedup

  Sequential 
Runtime (ms) 

Accelerated 
Runtime (ms) 

Speedup  
Rate 

Samsung 
Galaxy 
Note 4 

LeNet-5 44 1.8 24.44 
Alex’s CIFAR-10 162 7.5 21.6 

AlexNet 5876 92.6 63.45 

HTC One 
M9 

 LeNet-5 62 4.3 14.42 
Alex’s CIFAR-10 168 8.7 19.31 

AlexNet 5828 152 38.34 



Experiment Results - Speedup
• Average runtime of the entire CNN execution per image in a batch of

16 images, and the corresponding speedup
• Up to ~ 40 X speedup

  Sequential 
Runtime (ms) 

Accelerated 
Runtime (ms) 

Speedup  
Rate 

Samsung 
Galaxy 
Note 4 

LeNet-5 62 12.8 4.84 
Alex’s CIFAR-10 313 25.3 12.37 

AlexNet 20767 481.7 43.11 

HTC One 
M9 

 LeNet-5 81 16.6 4.88 
Alex’s CIFAR-10 326 31 10.51 

AlexNet 21382 709 30.16 



Experiment Results - Energy
• Power & energy consumption per image for AlexNet on HTC One M9
• Measured by “Qualcomm Trepn Profiler” application
• Average of multiple measurements with ~ 20 % variability
• ~ 130 X saving in energy

  Sequential Accelerated Reduction 

Power (mW) 2337.70 522.87 ~ 4.5 X 

Energy (J) 51.6 0.4 ~ 130 X 


