
CNNdroid:
GPU-Accelerated Execution of Trained Deep
Convolutional Neural Networks on Android

Salar Latifi, Hossein Golestani, Matin Hashemi, Soheil Ghiasi
Sharif University of Technology
University of California, Davis

Source Code and Example Apps: github.com/ENCP/CNNdroid
Contact E-mail: matin@sharif.edu

CNNdroid Motivation
• GPU acceleration enables practical execution of many

deep CNN algorithms on smartphones and wearable
devices and enables more creative media-rich apps

• CNNdroid is the first GPU-accelerated library for
execution of trained deep CNNs on Android devices

• Android versions of Caffe and Torch only employ multi-core
mobile CPU and not mobile GPU

• Mobile GPU architecture is different from desktop GPU,
hence, it is impossible / inefficient to port existing parallel
algorithms in desktop libraries, e.g., Theano, to Android

Image Credits: IBM Research, Guardianlv, Nixie, Android Wear

Memory

A57
A53

CPU

L2 Cache

GPU

L2L2
L1 Cache

128-bit
SIMD ALU

VLIW
128-bit

SIMD ALU
A57
A53

A57
A53

A57
A53

SC
SC

SC
SC

SC
SC

Deployment Procedure
1. CNN model is trained by desktop platforms, e.g., Caffe, Torch, Theano
2. CNNdroid scripts convert trained models into CNNdroid format
3. NetFile is created by the user

• Layer setup of the deep CNN model
• Execution mode: CPU-only or GPU-accelerated
• Maximum memory usage of the library
• Turn auto-tuning ON or OFF

4. The trained model and the NetFile are uploaded to mobile device
5. Integration of CNNdroid into target Android app in only 5 lines of code

Upload to
Mobile
Device

Model Preparation Test PhaseTrain Phase

Caffe

Theano

Trained
Deep CNN

Model

Torch Convert trained CNN
to CNNdroid format

using provided scripts

Create NetFile
- layer setup
- execution mode
- maximum memory
- auto-tuning

Use CNNdroid for
CNN computation

CNNdroid

Others

1

2

3 4

5

// 1) Import CNNdroid library import network.CNNdroid;
...

// 2) Construct Renderscript object
RenderScript myRenderScript = RenderScript.create(this);

// 3) Provide NetFile and construct CNNdroid object
String NetFile = "/sdcard/AlexNet/AlexNet_NetFile.txt";
CNNdroid myCNN = new CNNdroid(myRenderScript, NetFile);

// 4) Prepare your input, which can be
// a single image or a batch of images
float[][][] inputSingle = loadSingleInput();
float[][][][] inputBatch = loadBatchInput();

// 5) Call ‘compute’ function for CNN execution
// and receive the result as an object
Object output = myCNN.compute(inputBatch);

Integration into Android application

Experiment Results - Speedup
• Average runtime of the heaviest convolution layer per image in a batch

of 16 images, and the corresponding speedup
• Up to ~ 60 X speedup

 Sequential
Runtime (ms)

Accelerated
Runtime (ms)

Speedup
Rate

Samsung
Galaxy
Note 4

LeNet-5 44 1.8 24.44
Alex’s CIFAR-10 162 7.5 21.6

AlexNet 5876 92.6 63.45

HTC One
M9

 LeNet-5 62 4.3 14.42
Alex’s CIFAR-10 168 8.7 19.31

AlexNet 5828 152 38.34

Experiment Results - Speedup
• Average runtime of the entire CNN execution per image in a batch of

16 images, and the corresponding speedup
• Up to ~ 40 X speedup

 Sequential
Runtime (ms)

Accelerated
Runtime (ms)

Speedup
Rate

Samsung
Galaxy
Note 4

LeNet-5 62 12.8 4.84
Alex’s CIFAR-10 313 25.3 12.37

AlexNet 20767 481.7 43.11

HTC One
M9

 LeNet-5 81 16.6 4.88
Alex’s CIFAR-10 326 31 10.51

AlexNet 21382 709 30.16

Experiment Results - Energy
• Power & energy consumption per image for AlexNet on HTC One M9
• Measured by “Qualcomm Trepn Profiler” application
• Average of multiple measurements with ~ 20 % variability
• ~ 130 X saving in energy

 Sequential Accelerated Reduction

Power (mW) 2337.70 522.87 ~ 4.5 X

Energy (J) 51.6 0.4 ~ 130 X

